skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hardisty, Alex R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet—the Digital Extended Specimen (DES) network—that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery. 
    more » « less
  2. We examine the intersection of the FAIR principles (Findable, Accessible, Interoperable and Reusable), the challenges and opportunities presented by the aggregation of widely distributed and heterogeneous data about biological and geological specimens, and the use of the Digital Object Architecture (DOA) data model and components as an approach to solving those challenges that offers adherence to the FAIR principles as an integral characteristic. This approach will be prototyped in the Distributed System of Scientific Collections (DiSSCo) project, the pan-European Research Infrastructure which aims to unify over 110 natural science collections across 21 countries. We take each of the FAIR principles, discuss them as requirements in the creation of a seamless virtual collection of bio/geo specimen data, and map those requirements to Digital Object components and facilities such as persistent identification, extended data typing, and the use of an additional level of abstraction to normalize existing heterogeneous data structures. The FAIR principles inform and motivate the work and the DO Architecture provides the technical vision to create the seamless virtual collection vitally needed to address scientific questions of societal importance. 
    more » « less